
Advanced Mathematical Models & Applications

Vol.7, No.1, 2022, pp.16-29

DEGREE OF CONVERGENCE OF DERIVED FOURIER SERIES
IN BESOV SPACES

H.K. Nigam1, M. Mursaleen2∗, Saroj Yadav1

1Department of Mathematics, Central University of South Bihar, Gaya, India
2Department of Mathematics, Aligarh Muslim University, Aligarh, India

Abstract. In this paper, we study the degree of convergence of the functions of derived Fourier series in Besov

spaces using Matrix-generalized Nörlund (ANp,q) means. We also study an application of our main results.

Keywords: Degree of convergence, modulus of smoothness, Besov spaces, matrix-generalized Nörlund (ANp,q)

method, derived Fourier series.

AMS Subject Classification: 42A10, 42B05.

Corresponding author: M. Mursaleen, Department of Mathematics, Aligarh Muslim University, Aligarh, India,

e-mail: mursaleenm@gmail.com

Received: 4 January 2022; Revised: 15 March 2022; Accepted: 6 April 2022; Published: 19 April 2022.

1 Introduction

The Besov space Bβ
ρ (Lq) is a set of functions f from Lq which have smoothness β and the

parameter ρ gives a finer gradation of smoothness (see 5). It is a tool to describe the smoothenss
properties of functions and contains a large number of fundamental spaces such as Sobolev,
Lipschitz and Hölder spaces. These spaces appear naturally in many fields of analysis. Currently,
there are two definitions of Besov spaces which are in use. First one uses Fourier transforms and
the second uses modulus of smootheness of the function f . These two definitions are equivalent
only with certain restrictions on the parameter; e.g. they are different when q < 1 and β is
small.

The Besov spaces defined by the modulus of smoothness appear more naturally in many
areas of analysis including approximation theory (Devore & Popov, 1988).

In this paper, we study the degree of convergence of the functions of derived Fourier series
in Besov norms using a new summability matrix-generalized Nörlund (ANp,q) means. However,
detailed objectives of this paper will be presented in Section-3.

Organization of the paper is as follows: In Section-2, we give important definitions related
to our work. In Section-3, we mention detailed objectives of the proposed problems and obtain
the results. Application and the numerical result is discussed in Section-4 while conclusion is
given in Section-5.
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2 Notation and Preliminaries

In this section, we present some important notations and definitions.

2.1 Notation

ων(f, y)q =

{
ω1(f, y)q, 0 < β < 1

ω2(f, y)q 1 ≤ β < 2.

2.2 Besov Spaces

For 1 ≤ q < ∞, the space Lq[0, 2π] consists of all measurable functions on [0, 2π] such that∫ 2π

0

∣∣f(y)∣∣qdy < ∞

and the norm is defined by

||f ||q =


(

1

2π

∫ 2π

0

∣∣f(y)∣∣qdy) 1
q

, 1 ≤ q < ∞;

ess sup
f∈(0,2π)

|f(y)|, q = ∞.

When q = 2 then,

||f ||2 =
(

1

2π

∫ 2π

0
|f(y)|2dy

) 1
2

.

The ν-th order modulus of smoothness of a function f ∈ Lq is defined by

ων(f, y)q = sup
0<h≤y

||∆ν
h(f, ·)||q, y > 0 (1)

where

∆ν
h(f, y) =

ν∑
j=0

(−1)ν−j

(
ν

j

)
f(y + jh), ν ∈ N.

For ν = 1 and q = ∞, ω1(f, y) is called the modulus of continuity of f (Devore & Lorentz,
1993).
If f ∈ C2π and ω(f, y) = O(yβ), for 0 < β ≤ 1, then the function f ∈ Lip(β). If the function f
belongs to Lq, 0 < q < ∞, and ω(f, y)q = O(yβ), 0 < β ≤ 1, then the function f ∈ Lip(β, q).
If q = ∞, then the class Lip(β, q) reduces to the class Lip(β). Thus,

Lip(α) ⊆ Lip(β, q). (2)

Let β > 0 and for ν > β suppose that ν = [β] + 1, where ν is the smallest ineteger. For f ∈ Lq,
if

ων(f, y)q = O(yβ) (3)

then the function f belongs to the generalized Lipschitz class Lip∗(β, q), y > 0 and the seminorm
of this class is given by

|f |Lip∗(β,q) = sup
y>0

(y−βων(f, y)q). (4)
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Let β > 0 be given, and let ν = [β] + 1. For 0 < q, ρ ≤ ∞, the Besov space Bβ
ρ (Lq) is the

collection of all the signals (2π-periodic functions) f ∈ Lq such that

|f |
Bβ

ρ (Lq)
= ||ων(f, .)||β,ρ =


[∫ π

0

(
y−βων(f, y)q

)ρdy

y

] 1
ρ

, 1 ≤ ρ < ∞;

sup
y>0

(
y−βων(f, y)q

)
, ρ = ∞.

(5)

is finite (Prössdorf, 1975). It is known that (5) is a seminorm if 1 ≤ q, ρ ≤ ∞ and a quasi-

seminorm in other cases (Devore & Lorentz, 1993). Thus, the quasi-norm for Bβ
ρ (Lq) is defined

by

||f ||
Bβ

ρ (Lq)
= ||f ||q + |f |

Bβ
ρ (Lq)

= ||f ||q + ||ων(f, .)||β,ρ. (6)

When q = 2, the quasi-norm for Bβ
ρ (L2) is defined by

||f ||
Bβ

ρ (L2)
= ||f ||2 + |f |

Bβ
ρ (L2)

= ||f ||2 + ||ων(f, .)||β,ρ. (7)

Remark 1. (i) In particular, for ρ = ∞, Bβ
∞(Lq) = Lip∗(β, q).

(ii) When 0 < β < 1, the space Bβ
∞(Lq) reduces to the generalized Hölder spaces Hβ,q

(Das et al., 1996).

(iii) By taking q = ∞ = ρ and 0 < β < 1, the Besov spaces reduces to the Hölder spaces Hβ

(Prössdorf, 1975).

2.3 Derived Fourier Series

Let f be a 2π-periodic Lebesgue integrable function defined on [−π, π].
The Fourier series of f is given by

f(t) ∼ a0
2

+
∞∑
ν=1

(aν cos νt+ bν sin νt). (8)

The derived Fourier series of (8) is given by

f
′
(t) ∼

∞∑
ν=1

(bν cos νt− aν sin νt) (9)

which is obtained by differentiating (8) term by term.
The νth partial sum of (9) is given by

s
′
ν(f

′
; t) = s

′
ν(t)− f

′
(t) =

1

2π

∫ π

0
Dν(s)dgt(s), (10)

where

gt(s) = f(t+ s)− f(t− s)− 2sf
′
(t)

and

dgt(s) = d(f(t+ s)− f(t− s))− 2f
′
(t)ds.
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2.4 Matrix-Generalized Nörlund (ANp,q) Means

Now we introduce for the first time a new product summability Matrix-Generalized Nörlund
(ANp,q) method.

Let A = (aν,k); ν, k = 0, 1, 2, · · · be an infinite triangular matrix satisfying the Silverman-
Toeplitz (Toeplitz, 1913) conditions of regularity i.e.

ν∑
k=0

aν,k = 1 as ν → ∞,

aν,k = 0, for k > ν, (11)
ν∑

k=0

|aν,k| ≤ M, a finite constant.

Let
∞∑
ν=0

uν be an infinite series such that sν =
ν∑

k=0

uk. If tAν =
ν∑

k=0

aν,ksk → s as ν → ∞, then

the series

∞∑
ν=0

uν or sequence {sν} is summable to s by matrix (A) method.

Let {pν} and {qν} be the sequence of constants, real or complex such that

Pν = p0 + p1 + · · ·+ pν =
ν∑

k=0

pk → ∞, as ν → ∞,

Qν = q0 + q1 + · · ·+ qν =
ν∑

k=0

qk → ∞, as ν → ∞,

and

Rν = p0qν + p1qν−1 + · · ·+ pνq0 =
ν∑

k=0

pkqν−k → ∞, as ν → ∞.

Given two sequences {pν} and {qν}, convolution (p ∗ q) is defined as

Rν = (p ∗ q)ν =

ν∑
j=0

pν−jqj .

We write

tN
p,q

ν =
1

Rν

ν∑
j=0

pν−jqjsj

If Rν ̸= 0 for all ν, generalized Nörlund transform (Np,q) of the sequence {sν} is the sequence
{tNp,q

ν }.

If {tNp,q

ν } → s, as ν → ∞, then the series
∞∑
ν=0

uν or sequence {sν} is summable to s by

generalized Nörlund (Np,q) method and is denoted by sν → s(Np,q).
The necessary and sufficient condition for (Np,q) method to be regular are

ν∑
j=0

|pν−jqj | = O(|Rν |) and pν−j = o(|Rν |) as ν → ∞

for every fixed j ≥ 0 for which qj ̸= 0.
If the matrix method is superimposed on the generalized Nörlund (Np,q) method, then a new
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summability ANp,q method is obtained. We can define ANp,q product method as

tANp,q

ν =
ν∑

j=0

aν,jt
Np,q

j

=
ν∑

j=0

aν,j
1

Rj

j∑
k=0

pj−kqksk.

If tANp,q

ν → s as ν → ∞, then the series
∞∑
ν=0

uν or the sequence {sν} is summable to s by ANp,q

method.
The regularity condition of ANp,q method is as follows:

sν → s ⇒ tANp,q

ν → s, as ν → ∞ so Np,q method is regular,

⇒ A(tN
p,q

ν ) = tANp,q

ν → s as ν → ∞ so A method is regular,

⇒ (ANp,q) method is regular.

Remark 2. Consider an infinite series

1 +
∞∑
ν=1

(−1)ν · 2ν. (12)

The νth partial sum of the series is given by

sν =

{
ν + 1, ν is even,

0, ν is odd.

If we take aν,k = 1
ν+1 for k ≤ ν, then series (12) is not summable by matrix means.

If we take pν = 1 and qν = 1 for all ν ≥ 0 in the generalized Nörlund means, then series (12) is
also not summable by generalized Nörlund means.

tANp,q

ν =
ν∑

j=0

aν,j
1

Rj

j∑
k=0

pj−kqksk

=
ν∑

j=0

aν,j
1

j + 1
[pjq0s0 + pj−1q1s1 + · · · p0qjsj ]

=

ν∑
j=0

aν,j
1

j + 1
[s0 + s1 + · · ·+ sj ]

= aν,0[s0] + aν,1

[
s0 + s1

2

]
+ · · ·+ aν,ν

[
s0 + s1 + · · ·+ sν

ν + 1

]
.

Clearly, we have seen that series (12) is summable by matrix-generalized Nörlund (ANp,q) means.
Therefore, the product means is more powerful than the single means.

Remark 3. Particular cases of ANp,q means:

(i) ANp,q means reduces to C1Np,q when aν,k = 1
(ν+1) .

(ii) ANp,q means reduces to HNp,q when aν,k = 1
(ν−k+1) log ν .

(iii) ANp,q means reduces to CδNp,q when aν,k =
(ν−k+δ−1

δ−1 )
(ν+δ

δ )
.
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(iv) ANp,q means reduces to HpNp,q when aν,k =
1

logp−1(ν + 1)
∏p−1

m=0 log
m(k + 1)

.

(v) ANp,q means reduces to NpNp,q when aν,k =
pν−k

Pν
, where Pν =

∞∑
k=0

pk.

(vi) ANp,q means reduces to N̄pNp,q when aν,k =
pk
Pν

, where Pν =

∞∑
k=0

pk.

(vii) ANp,q means reduces to ANp when qν = 1, ∀ν.

(viii) ANp,q means reduces to AN̄ q when pν = 1, ∀ν.

(ix) ANp,q means reduces to ACδ when pν =
(
ν+δ−1
δ−1

)
, δ > 0 and qν = 1, ∀ν.

Remark 4. The above particular cases can be further reduced as:

(i) C1Np,q means reduces to C1Np when qν = 1, ∀ν.

(ii) HNp,q means reduces to HNp when qν = 1, ∀ν.

(iii) CδNp,q means reduces to CδNp when qν = 1, ∀ν.

(iv) HpNp,q means reduces to HpNp when qν = 1, ∀ν.

(v) N̄ qNp,q means reduces to N̄ qNp when pν = 1, ∀ν.

(vi) C1Np,q means reduces to C1N̄ q when pν = 1, ∀ν.

(vii) CδNp,q means reduces to CδN̄ q when pν = 1, ∀ν.

(viii) HNp,q means reduces to HN̄ q when pν = 1, ∀ν.

(ix) HpNp,q means reduces to HpN̄ q when pν = 1, ∀ν.

(x) HNp,q means reduces to HCδ when p =
(
ν+δ−1
δ−1

)
, δ > 0 and qν = 1, ∀ν.

(xi) HpNp,q means reduces to HpCδ when p =
(
ν+δ−1
δ−1

)
, δ > 0 and qν = 1, ∀ν.

(xii) NpNp,q means reduces to NpCδ when p =
(
ν+δ−1
δ−1

)
, δ > 0 and qν = 1, ∀ν.

(xiii) N̄ qNp,q means reduces to N̄ qCδ when p =
(
ν+δ−1
δ−1

)
, δ > 0 and qν = 1, ∀ν.

2.5 Degree of Convergence

The degree of convergence of a summation method to a given function f is a measure that how
fast Tν converges to f , which is given by

||f − Tν || = O
(

1

λν

)
(London, 2008),

where λν → ∞ as ν → ∞.

3 Main Result

In this section, we present our main result to find the degree of convergence of derived Fourier
series in Besov spaces using Matrix-generalized Nörlund (ANp,q) means.
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3.1 Degree of Convergence of a Function of Derived Fourier Series

The degree of approximation of a function in function spaces viz, Lipschtiz, Hölder and gen-
eralized Hölder class using different means of Fourier series, has been studied by the authors
Rhoades (2014); Nigam & Hadish (2018); Krasniqi & Szal (2019); Nigam & Rani (2020) etc.

In this subsection, we study the degree of convergence of a function in Besov spaces using a
new summability method matrix-generalized Nörlund (ANp,q) means of derived Fourier series
and establish the following theorems. We observe that the results obtained in the following
theorems provide best approximation of function f

′
in Besov norms.

Remark 5. Since the derived Fourier series converges uniformly in L2-norm, we will find the
degree of convergence of derived Fourier series in L2-norm.

Theorem 1. Let f
′
be a 2π-period and Lebesgue integrable function belonging to Besov spaces

Bβ
ρ (L2), 1 < ρ < ∞, then for 0 ≤ γ < β < 2, the degree of convergence of a function f

′
of

derived Fourier series using ANp,q transform, is given by

||Tν(·)||Bγ
ρ (L2) =O

(
(ν + 1)

∫ 1
ν+1

0
|dgt(s)|+

1

ν + 1

∫ π

1
ν+1

|dgt(s)|
s2

)

+O
(
(ν + 1)

∫ 1
ν+1

0

(
s
−γ− 1

ρ
)
|dgt(s)|

+
1

(ν + 1)

∫ π

1
ν+1

(
s
−γ− 1

ρ
−2)|dgt(s)|).

Following lemmas are required for the proof of Theorem 1.

Lemma 1. If {pν} and {qν} are monotonic increasing and monotonic decreasing sequences
respectively, then

(ν + 1)pνq0 = O(Rν). (13)

Proof. Since

Rν =
ν∑

k=0

pkqν−k = p0qν + p1qν−1 + · · ·+ pνq0

≥ p0qν + p0qν + · · ·+ p0qν

= (ν + 1)p0qν .

Thus,
(ν + 1)pνq0 = O(Rν).

Lemma 2. For 0 < s ≤ 1
ν+1 , M

ANp,q

ν (s) = O(ν + 1).
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Proof. For 0 < s ≤ 1
ν+1 , sin( s2) ≥

s
π and sin(k + 1

2)s ≤ (k + 1
2)s.

|MANp,q

ν (s)| =
∣∣∣∣ 12π

ν∑
j=0

aνj
1

Rj

j∑
k=0

pj−kqk
sin(k + 1

2)s

sin s
2

∣∣∣∣
≤ 1

4π

∣∣∣∣ ν∑
j=0

aνj
1

Rj

j∑
k=0

pj−kqk
(2k + 1)s

s
π

∣∣∣∣
≤1

4

∣∣∣∣ ν∑
j=0

aνj
1

Rj

j∑
k=0

pj−kqk(2k + 1)

∣∣∣∣
≤1

4

∣∣∣∣ ν∑
j=0

aνj
1

Rj
(2j + 1)

j∑
k=0

pj−kqk

∣∣∣∣
=
1

4

∣∣∣∣ ν∑
j=0

aνj(2j + 1)

∣∣∣∣.
Thus,

MANp,q

ν (s) = O(ν + 1).

Lemma 3. For 1
ν+1 < s ≤ π, MANp,q

ν (s) = O
(

1
s2(ν+1)

)
.

Proof. For 1
ν+1 < s ≤ π, sin( s2) ≥

s
π , | sin s| ≤ 1.

|MANp,q

ν (s)| =
∣∣∣∣ 12π

ν∑
j=0

aνj
1

Rj

j∑
k=0

pj−kqk
sin(k + 1

2)s

sin s
2

∣∣∣∣
≤ 1

2s

∣∣∣∣ ν∑
j=0

aνj
1

Rj

j∑
k=0

pj−kqk sin

(
k +

1

2

)
s

∣∣∣∣.
Now, using Abel’s transformation we have,∣∣∣∣ j∑

k=0

pj−kqk sin

(
k +

1

2

)
s

∣∣∣∣ =∣∣∣∣ j−1∑
k=0

(pj−kqk − pj−k−1qk+1)

k∑
r=0

sin

(
r +

1

2

)
s

+ p0qj

j∑
k=0

sin

(
k +

1

2

)
s

∣∣∣∣
=O

(
1

s

)[ j−1∑
k=0

∣∣pj−kqk − pj−k−1qk+1

∣∣+ |p0qj |
]

=O
(
pjq0
s

)
.

Thus, by using Lemma 1, we have

MANp,q

ν (s) = O
(

1

s2(ν + 1)

)
.
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Proof of Theorem 1. Using (10), the ANp,q transform of the sequence {s′
ν(t)} is given by

T
′
ν(t) = tANp,q

ν (t)− f
′
(t) =

ν∑
j=0

aνj
1

Rj

j∑
k=0

pj−kqk{s
′
k(t)− f

′
(t)}

=

ν∑
j=0

aνj
1

Rj

j∑
k=0

pj−kqk

[
1

2π

∫ π

0

sin(k + 1
2)s

sin s
2

dgt(s)

]
(14)

Thus,

T
′
ν(t) =

1

2π

∫ π

0

ν∑
j=0

aνj
1

Rj

j∑
k=0

pj−kqk
sin(k + 1

2)s

sin s
2

dgt(s) (15)

=

∫ π

0
MANp,q

ν (s)dgt(s). (16)

By definition of Besov norm given in (7), we have

||Tν(·)||Bγ
ρ (L2) = ||Tν(·)||2 + ||ωk(Tν , ·)2||γ,ρ. (17)

Using generalized Minkowski’s inequality (Chui, 1992), we have

||Tν(·)||2 ≤
∫ π

0
|dgt(s)||Mν(s)|

=

∫ 1
ν+1

0
|dgt(s)||Mν(s)|+

∫ π

1
ν+1

|dgt(s)||Mν(s)|. (18)

Now, using Lemmas 2 and 3, we have

||Tν(·)||2 = O
(
(ν + 1)

∫ 1
ν+1

0
|dgt(s)|+

1

ν + 1

∫ π

1
ν+1

|dgt(s)|
s2

)
. (19)

Now, using definition of Besov spaces, we have

||ωk(Tν , ·)2||γ,ρ ≤
{∫ π

0

(
y−γ ||Tν(·, y)||2

)ρdy

y

} 1
ρ

. (20)

Using generalized Minkowski’s inequality (Chui (1992)), we have

||ωk(Tν , ·)2||γ,ρ ≤
[ ∫ π

0

(∫ π

0
|Mν(s)||dgt(s)|

)ρ dy

yγρ+1

] 1
ρ

=

∫ π

0
|Mν(s)||dgt(s)|

(∫ π

0

dy

yγρ+1

) 1
ρ

=

∫ π

0
|Mν(s)||dgt(s)|

(∫ s

0

dy

yγρ+1

) 1
ρ

(21)

+

∫ π

0
|Mν(s)||dgt(s)|

(∫ π

s

dy

yγρ+1

) 1
ρ

.

Using the second mean value theorem, we have

||ωk(Tν , ·)2||γ,ρ ≤
∫ π

0
|Mν(s)||dgt(s)|

(
s
−γ− 1

ρ
)

=

∫ π

0

(
s
−γ− 1

ρ
)
|Mν(s)||dgt(s)|

=

∫ 1
ν+1

0

(
s
−γ− 1

ρ
)
|Mν(s)||dgt(s)|+

∫ π

1
ν+1

(
s
−γ− 1

ρ
)
|Mν(s)||dgt(s)|. (22)
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Using Lemmas 2 and 3, we have

||ωk(Tν , ·)2||γ,ρ =O
(
(ν + 1)

∫ 1
ν+1

0

(
s
−γ− 1

ρ
)
|dgt(s)|

+
1

(ν + 1)

∫ π

1
ν+1

(
s
−γ− 1

ρ
−2)|dgt(s)|). (23)

Combining (17), (19) and (23), we have

||Tν(·)||Bγ
ρ (L2) =O

(
(ν + 1)

∫ 1
ν+1

0
|dgt(s)|+

1

ν + 1

∫ π

1
ν+1

|dgt(s)|
s2

)

+O
(
(ν + 1)

∫ 1
ν+1

0

(
s
−γ− 1

ρ
)
|dgt(s)|

+
1

(ν + 1)

∫ π

1
ν+1

(
s
−γ− 1

ρ
−2)|dgt(s)|).

Remark 6. When ρ = ∞, the Besov space Bβ
∞(Lq), β ≥ 0, q ≥ 1 reduces to generalized

Lipschitz class Lip∗(β, q) and the corresponding norm || · ||
Bβ

∞(Lq)
is given by

||f ||
Bβ

∞(Lq)
= ||f ||Lip∗(β,q) = ||f ||q + sup

y>0
y−βων(f, y)q. (24)

Thus, in view of Remark 6, we establish the following theorem to obtain degree of convergence
for f

′ ∈ Lip∗(β, 2), q = 2, ρ = ∞:

Theorem 2. Let f
′
be a 2π-period and Lebesgue integrable function belonging to generalized

Lipschitz spaces Lip∗(β, L2), ρ = ∞, then for 0 ≤ γ < β < 2, the degree of convergence of a
function f

′
of derived Fourier series using ANp,q transform, is given by

||Tν(·)||Lip∗(γ,L2) =O
(
(ν + 1)

∫ 1
ν+1

0
|dgt(s)|ds+

1

ν + 1

∫ π

1
ν+1

|dgt(s)|
s2

)

+O(ν + 1) sup
0<y,s≤π

(∫ 1
ν+1

0
y−γ |dgt(s)|

)
+O

(
1

ν + 1

)
sup

0<y,s≤π

(∫ π

1
ν+1

y−γ−2|dgt(s)|
)
.

Proof of Theorem 2. By definition of Besov norm given in (24), we have

||Tν(·)||Lip∗(γ,L2) = ||Tν(·)||2 + ||ωk(Tν , ·)2||γ,∞. (25)
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Using the generalized Minkowski’s inequality (Chui, 1992), we have

||ωk(Tν,·)2||γ,∞ = sup
0<y,s≤π

(y−γωk(Tν , y)2)

= sup
0<y,s≤π

(y−γ ||Tν(·, y)||2)

≤ sup
0<y,s≤π

[
y−γ

(∫ π

0
|Mν(s)||dgt(s)|

)]
= sup

0<y,s≤π

(∫ 1
ν+1

0
y−γ |Mν(s)||dgt(s)|+

∫ π

1
ν+1

y−γ |Mν(s)||dgt(s)|
)

=O(ν + 1) sup
0<y,s≤π

(∫ 1
ν+1

0
y−γ |dgt(s)|

)
+O

(
1

ν + 1

)
sup

0<y,s≤π

(∫ π

1
ν+1

y−γ−2|dgt(s)|
)
. (26)

From equation (19) and (26), we have

||Tν(·)||Lip∗(γ,L2) =O
(
(ν + 1)

∫ 1
ν+1

0
|dgt(s)|ds+

1

ν + 1

∫ π

1
ν+1

|dgt(s)|
s2

)

+O(ν + 1) sup
0<y,s≤π

(∫ 1
ν+1

0
y−γ |dgt(s)|

)
+O

(
1

ν + 1

)
sup

0<y,s≤π

(∫ π

1
ν+1

y−γ−2|dgt(s)|
)
.

Corollary 1. Let f
′
be a 2π-period and Lebesgue integrable function belonging to Besov spaces

Bβ
ρ (L2), 1 < ρ < ∞, then for 0 ≤ γ < β < 2, the degree of convergence of a function f

′
of

derived Fourier series using C1Np,q transform, is given by

||Tν(·)||Bγ
ρ (L2) =O

(
(ν + 1)

∫ 1
ν+1

0
|dgt(s)|+

1

ν + 1

∫ π

1
ν+1

|dgt(s)|
s2

)

+O
(
(ν + 1)

∫ 1
ν+1

0

(
s
−γ− 1

ρ
)
|dgt(s)|

+
1

(ν + 1)

∫ π

1
ν+1

(
s
−γ− 1

ρ
−2)|dgt(s)|).

Remark 7. We can deduce further corollaries from the Theorem 1 in view of Remarks 3 and 4.

Corollary 2. Let f
′
be a 2π-period and Lebesgue integrable function belonging to generalized

Lipschitz spaces Lip∗(β, L2), ρ = ∞, then for 0 ≤ γ < β < 2, the degree of convergence of a
function f

′
of derived Fourier series using ANp,q transform, is given by

||Tν(·)||Lip∗(γ,L2) =O
(
(ν + 1)

∫ 1
ν+1

0
|dgt(s)|ds+

1

ν + 1

∫ π

1
ν+1

|dgt(s)|
s2

)

+O(ν + 1) sup
0<y,s≤π

(∫ 1
ν+1

0
y−γ |dgt(s)|

)
+O

(
1

ν + 1

)
sup

0<y,s≤π

(∫ π

1
ν+1

y−γ−2|dgt(s)|
)
.

Remark 8. We can deduce further corollaries from the Theorem 2 in view of Remarks 3 and 4.
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4 Application

In this section, we study an application of our main results.

4.1 Application on the degree of convergence of a function of derived Fourier
series in Besov norm using Matrix-generalized Nörlund (ANp,q) means

Consider a function f
′
(t) = sin t and aν,k = 1

(ν−k+1) log ν for ν ≤ k, and aν,k = 0

for ν > k, and pν =
(
ν+δ−1
δ−1

)
, δ > 0, qν = 1, ∀ν.

Thus dgt(s) = −2 cos t(sin2 s
2)ds.

Therefore, MANp,q

ν = O(ν +1) for 0 < s ≤ 1
ν+1 and MANp,q

ν = O
(

1
s2(ν+1)

)
for 1

ν+1 < s ≤ π.

Taking β = 1, γ = 0 and ρ = ∞.
Since | cos s| ≤ 1 and sin( s2) ≥ ( sπ ), for 0 < s ≤ π, therefore we have,

||Tν(·)||2 = O
(

π

(ν + 1)

)
and

||ωk(Tν , ·)2||γ,ρ = O
(

1

(ν + 1)
+

log(π(ν + 1))

(ν + 1)

)
.

Thus, the degree of convergence of f
′
(t) = sin t is obtained by

||T ′
ν(·)||Bγ

ρ (L2) = ||Tν(·)||2 + ||ωk(Tν , ·)2||γ,ρ

= O
(
π + 1 + log(π(ν + 1))

(ν + 1)

)
.

Table 1

ν T
′
ν(t) =

π + 1 + log(π(ν + 1))

(ν + 1)

100 0.0980341

1000 0.0121829

10000 0.0014495

50000 0.0003221

75000 0.0002202

100000 0.0001679

. .

. .

. .

∞ 0

Now, we draw the following graphs of T
′
ν(f

′
) for different values of ν:

27



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.7, N.1, 2022

1(a): For ν = 100 1(b): For ν = 1000

1(c): For ν = 10000 1(d): For ν = 50000

1(e): For ν = 75000 1(f): For ν = 100000.

Figure 1: Degree of convergence of f
′
(t) = sin(t).

Remark 9. From the Table 1 and figures 1(a) to 1(f), we observe that the results obtained in
Theorem 1 and 2 together for 1 < ρ ≤ ∞ provide best approximation of the function f

′
.

5 Conclusion

From the Table 1 and figures 1(a) to 1(f), we observe that the results obtained in Theorem 1
and 2 together for 1 < ρ ≤ ∞ provide best approximation of the function f

′
.
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